Enhancing the luminescence properties and stability of cationic iridium(III) complexes based on phenylbenzoimidazole ligand: a combined experimental and theoretical study.
نویسندگان
چکیده
Herein we designed and synthesized a series of cationic iridium(III) complexes with a phenylbenzoimidazole-based cyclometalated ligand, containing different numbers of carbazole moieties from zero to three (complexes 1-4). The photophysical and electrochemical properties of this series have been systematically investigated. The complexes exhibit strong luminescence in both solution and in neat films, as well as excellent redox reversibility. Introducing carbazole groups into the complexes is found to lead to substantially enhanced photoluminescence quantum efficiency in the neat film, but has little effect on the emitting color and excited-state characteristics as supported by density functional theory (DFT) results. DFT calculations also suggest that functionalized complexes 2-4 reveal better hole-transporting properties than 1. More importantly, all complexes effectively reduce the degradation reaction to some extent in metal-centered (³MC) excited-states, demonstrating their stability. Further studies indicate that restriction of opening of the structures in the ³MC state is caused by the unique molecular conformation of the phenylbenzoimidazole ligand, which is first demonstrated here in cationic iridium(III) complexes without intramolecular π-π stacking. These results presented here would provide valuable information for designing and synthesizing highly efficient and stable cationic iridium(III) complexes suitable for the optical devices.
منابع مشابه
Rare Earth Nitrate Complexes with an ONO Schiff Base Ligand: Spectral, Thermal, Luminescence and Biological Studies
Five rare earth complexeslanthanum(III),praseodymium(III),neodymium(III), samarium(III) and europium(III) have been synthesized from Schiff base ligand (N,N-bis (2-hydroxy-1-naphthylidene) acetylhydrazone). The complexes were characterized based on elemental analysis, molar conductance, ultraviolet, infrared, mass, thermogravimetric and powder X-ray diffraction studies. Infrared spectra sug...
متن کاملCreation of cationic iridium(III) complexes with aggregation-induced phosphorescent emission (AIPE) properties by increasing rotation groups on carbazole peripheries.
Three cationic iridium complexes containing 4,7-bis(3,6-di-tert-butyl-9H-carbazol-9-yl)-1,10-phenanthroline (L(1)) and 4,7-bis(3',6'-di-tert-butyl-6-(3,6-di-tert-butyl-9H-carbazol-9-yl)-3,9'-bi(9H-carbazol)-9-yl)-1,10-phenanthroline (L(2)) as the ancillary ligands, namely, [Ir(ppy)(2)(L(1))]PF(6) (1), [Ir(ppy)(2)(L(2))]PF(6) (2) and [Ir(oxd)(2)(L(2))]PF(6) (3) (ppy is 2-phenylpyridine, oxd is 2...
متن کاملA cationic iridium(III) complex showing aggregation-induced phosphorescent emission (AIPE) in the solid state: synthesis, characterization and properties.
We report the synthesis and characterization of two cationic iridium(III) complexes with dendritic carbazole ligands as ancillary ligands, namely, [Ir(ppy)(2)L3]PF(6) (1) and [Ir(ppy)(2)L4]PF(6) (2), where L3 and L4 represent 3,8-bis(3,6-di-tert-butyl-9H-carbazol-9-yl)-1,10-phenanthroline and 3,8-bis(3',6'-di-tert-butyl-6-(3,6-di-tert-butyl-9H-carbazol-9-yl)-3,9'-bi(9H-carbazol)-9-yl)-1,10-phen...
متن کاملCyclometalated cinchophen ligands on iridium(III): towards water-soluble complexes with visible luminescence.
Eight cationic heteroleptic iridium(III) complexes, [Ir(epqc)2(N^N)](+), were prepared in high yield from a cyclometalated iridium bridged-chloride dimer bearing two ethyl-2-phenylquinoline-4-carboxylate (epqc) ligands. Two X-ray crystallographic studies were undertaken on selected complexes (where the ancillary ligand N^N = 4,4'-dimethyl-2,2'-bipyridine and 4,7-diphenyl-1,10-phenanthroline) ea...
متن کاملIridium(III) N-heterocyclic carbene complexes: an experimental and theoretical study of structural, spectroscopic, electrochemical and electrogenerated chemiluminescence properties.
Four cationic heteroleptic iridium(III) complexes have been prepared from methyl- or benzyl-substituted chelating imidazolylidene or benzimidazolylidene ligands using a Ag(I) transmetallation protocol. The synthesised iridium(III) complexes were characterised by elemental analysis, (1)H and (13)C NMR spectroscopy and the molecular structures for three complexes were determined by single crystal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Dalton transactions
دوره 42 31 شماره
صفحات -
تاریخ انتشار 2013